
Electron Impact Studies on Cyclopentadienyliron Carbonyl Tetramer: a Novel Route to a "Triple-decker" Sandwich Ion

By R. B. King

(Mellon Institute, Pittsburgh, Pennsylvania 15213 and *Department of Chemistry, University of Georgia, Athens, Georgia 30601)

The tetranuclear cyclopentadienylmetal carbonyl derivative¹ $[(\pi-C_5H_5)FeCO]_4$ has a symmetrical structure² with a tetrahedral cluster of iron atoms, a π -cyclopentadienyl ring bonded to each iron atom, and a three-way bridging carbonyl group in each of the four faces of the iron tetrahedron.

Its mass spectrum (inlet temp. ca. 200°; source pressure 3×10^{-6} mm.) exhibits a parent ion $(m/e\ 596)$ and a tetrametallic ion $(\pi\text{-}C_5\text{H}_5)_4\text{Fe}_4^+$ formed by loss of all four carbonyl groups. The ions $(\pi\text{-}C_5\text{H}_5)_4\text{Fe}_4(\text{CO})_n^+$ (n=3, 2, and 1) formed by partial loss of carbonyl groups from the parent ion are also observed, but are unusually weak, having relative abundances <10% of $(\pi\text{-}C_5\text{H}_5)_4\text{Fe}_4(\text{CO})_n^+$ $(n=2\ \text{and } 0)$ formed by carbon–oxygen fission are also found, and, surprisingly, have relative abundances similar to those of $(\pi\text{-}C_5\text{H}_5)_4\text{Fe}_4(\text{CO})_n^+$ (n=3,2, and 1). The mass spectrum

of $[(\pi-C_5H_5)FeCO]_4$ thus differs from the mass spectra of other metal carbonyl derivatives³ [e.g. W(CO)₆⁴], where ions formed by carbon-oxygen fission [e.g. W(CO)_nC⁺], if observed at all, are very weak compared with the ions formed by metal-carbon fission [e.g. W(CO)_n⁺]. This suggests that, in $[(\pi-C_5H_5)FeCO]_4$ the metal-carbon bonds to the carbonyl groups are relatively strong and the carbonoxygen bonds of the carbonyl groups are relatively weak. The strength of the iron-carbonyl bonds is consistent with the three-way bridging of the carbonyl groups demonstrated by X-ray crystallography.² The weakness of the carbon-oxygen bonds is consistent with the unusually low ν_{CO} frequency (1620 cm.⁻¹).

The mass spectrum of $[(\pi-C_5H_5)FeCO]_4$ also exhibits the series of trimetallic ions $(\pi-C_5H_5)_3Fe_3(CO)_n^+$ (n = 2, 1, and 0) in addition to the trimetallic ion $(\pi-C_5H_5)_3Fe_3C^+$ formed by carbon-oxygen bond cleavage. The carbonyl-free trimetallic ion $(\pi-C_5H_5)_3Fe_3^+$ undergoes further decay by loss of a neutral iron atom according to the following process:

$$\begin{array}{cccc} & & & & & & & & & & \\ m^* & 259 \cdot 8 & & & & & \\ (\pi - C_5 H_5)_3 Fe_3^+ & & & & & & & \\ m/e & 363 & & & & & & & \\ m/e & 307 & & & & & \\ \end{array}$$

The $(\pi$ -C₅H₅)₃Fe₂⁺ ion has been previously observed in very low abundance by Schumacher and Taubenest⁵ in the mass spectrum of ferrocene at pressures sufficiently high for a bimolecular process to take place (*ca*. 1 × 10⁻⁵ mm.). This ion may have the "triple-decker" sandwich structure (I). This suggested structure is supported by the tendency for the $(\pi$ -C₅H₅)₃Fe₂⁺ ion to form the $(\pi$ -C₅H₅)₂Fe⁺ ion by

elimination of a neutral $(\pi$ -C₅H₅)Fe fragment in the following process:

$$\begin{array}{ccc} & & & & & & & \\ m^* & 112 \cdot 4 & & & \\ (\pi - C_5 H_5)_2 Fe_2^+ & & & & & \\ m/e & 307 & & & & & \\ m/e & 186 & & & \\ \end{array}$$

This is the only example in our work with a great variety of π -cyclopentadienylmetal derivatives where the elimination of a neutral C₅H₅M fragment has been supported by the presence of a metastable ion. Furthermore, in the previously reported⁵ work with $(C_5H_5)_3Fe_2^+$ generated from the mass spectrum of ferrocene, the abundance of the "triple-decker" sandwich ion was too low to permit the observation of its formation and decay by metastable ion analysis.

- ¹ R. B. King, Inorg. Chem., 1966, 5, 2227.

- ¹ L. F. Dahl, et al., unpublished results.
 ³ M. I. Bruce, Adv. Organometallic Chem., 1968, 6, 273.
 ⁴ R. E. Winters and R. W. Kiser, Inorg. Chem., 1965, 4, 157.
 ⁵ E. Schumacher and R. Taubenest, Helv. Chim. Acta, 1964, 47, 1525.
 ⁶ E. Schumacher and R. Taubenest, Helv. Chim. Acta, 1966, 49, 1447.

These preliminary results indicate that the electron impact of polynuclear cyclopentadienylmetal derivatives may provide sources of "triple-decker" sandwich ions in higher abundances than previous⁵ methods. Unfortunately not all polynuclear cyclopentadienylmetal derivatives generate "triple-decker" sandwich ions upon electron impact, as indicated by the failure to observe significant abundances of the $(C_5H_5)_3M_2^+$ ions or the metastable ions corresponding to their generation or decay in the mass spectra of $[(\pi - C_5H_5)CoCO]_3^1$ or $(\pi - C_5H_5)_3Ni_3(CO)_2^{.6}$

I thank the National Science Foundation for partial support of the Mellon Institute portion of this work.

(Received, February 24th, 1969; Com. 259.)